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Error propagation in a model of impact fracture

Hajime Inaoka,1 Eiji Toyosawa,2 and Hideki Takayasu3
1Department of Physics, Faculty of Science, Kyoto University, Kyoto 606-01, Japan

2Graduate School of Information Sciences, Tohoku University, Sendai 980-77, Japan
3Sony Computer Science Laboratory, Takanawa Muse Building, 3-14-13 Higashi-gotanda,

Shinagawa-ku, Tokyo 151, Japan
~Received 9 February 1998!

Sensitivity to the perturbation in the initial condition of a model of impact fracture is observed. Numerical
simulations show that the small perturbation in the initial condition is expanded following a power law by the
dynamics of the model. The propagation of the effect of the perturbation inside a fractured object during the
crack propagation is discussed.@S1063-651X~98!03810-0#
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The fracture process of brittle solid materials has be
widely studied because of its importance in various fields
science and technology@1–3#. In spite of these studies, it i
still very difficult to predict exactly how an object is frac
tured by an impact fracture process under given conditio
In view of classical physics, for a prediction of the behav
of a system, we need the dynamics governing the time e
lution of the system and observation of the initial conditi
of the system with sufficient accuracy. In the case of
impact fracture process, our understanding of the dynam
of crack propagation is not very good for such predictio
nor do we have a good technique to observe the fields
stress, strain, elastic moduli, etc. inside the object as the
tial condition given to the crack propagation dynamic
Moreover, even with a full understanding of dynamics an
good observational technique, we would not be able to eli
nate the difficulty of the prediction of the impact fractu
process if the dynamics causes ‘‘chaotic behavior.’’

The chaotic dynamics has a characteristic nature to
pand a minor perturbation in the initial condition expone
tially @4#. Namely, perturbatione0 in the initial condition is
expanded with timet as e0exp(lt), where the constantl is
called the Lyapunov exponent. This means that the beha
of a chaotic system is very sensitive to its initial conditio
That is, very slight observational errore0 in the initial con-
dition smaller than the observational resolution is expan
far greater than the observational resolution in a very sh
time to be observed as a big difference of the system be
ior. Since the observational error is inevitable in any obs
vation and it is impossible to know the difference betwe
the observed value and the real value smaller than the ob
vational resolution, the long-term behavior of a chaotic s
tem is unpredictable though the dynamics is deterministi

In this way, whether the dynamics of crack propagat
causes chaotic behavior is a big problem for prediction
impact fracture process. For quantitative analyses of the
sitivity to the small perturbation of the impact fracture by
experiment, we have to prepare two identical samples
have the same spatial distribution of compositions, textu
potential flaw, and so on, and we have to put a small per
bation of these fields onto one of the two samples. Th
identical impact must be loaded onto these two samples,
the crack propagation inside the two samples during the
PRE 581063-651X/98/58~4!/5179~4!/$15.00
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pact fracture process must be observed and compared t
timate the sensitivity to the perturbation. Obviously, it
impossible to conduct such an experiment by our pres
technique. Computer simulations resolve these techn
problems.

In this paper, we observe the sensitivity to the pertur
tion of an impact fracture process using a specific mo
proposed by Inaoka and Takayasu@5#.

The model was proposed to reproduce the fractality in
three-dimensional impact fracture such as the power-
fragment size distribution observed in an experiment of
fragmentation of sphere-shaped glass@6#. Not only does the
model successfully reproduce the power-law fragment s
distribution with good accuracy, it also explains universal
of the distribution independent of the material of a fractur
specimen@5,7# and the transition in the distribution by frag
mentation of a plate-shaped specimen@8,9#. Though the deri-
vation of the dynamics of the model from standard fractu
mechanics is still incomplete, by these successes, we t
that the model captures essential features of the impact f
ture process and that the results obtained by this spe
model are reliable.

The details of our numerical model are discussed in R
@5#. Here, we briefly review the basic idea. It has been r
ognized that a competition process among growing elem
is generally essential for a growth system to produce fra
lity @10#. In a system of diffusion-limited aggregation@11#, a
typical fractal growth system, for example, the competiti
among growing clusters, produces a power-law cluster s
distribution@12#. The analogy of the crack propagation to th
diffusion-limited aggregation has been discussed for a q
sistatic, elastic system@13,14#, where the speed of the crac
propagation is much smaller than that of the speed of
elastic wave in the medium. Our fracture model is based
a competitive process during crack propagation as follow

The mechanisms of three-dimensional crack propaga
in general situations are very complicated, so we focus
the situation where a rectangular parallelepiped object
fers an impact on one of its sides. It is a reasonable assu
tion that a planelike compressive density wave propaga
from the hit surface toward the opposite side with a const
velocity v0 as schematically shown in Fig. 1. We assume t
most of the crack propagation occurs only on this dens
5179 © 1998 The American Physical Society
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wave, forming a so-called failure wave@15#. By this assump-
tion we can treat the three-dimensional impact fracture p
cess by considering a time evolution of a crack configurat
on the two-dimensional density wave. We observe the pro
gation of cracks on a coordinate whosex-y plane is placed
on the hit surface of the fractured object and thez axis is
directed toward the propagating direction of the wave. T
density wave is placed at a depthv0t from the hit surface at
time t, and in a small time intervalDt it proceeds a smal
distancev0Dt. In our model, time is discretized and a cra
tip configuration on a layer at depthv0t determines the con
figuration of the next layer at depthv0(t1Dt). By setting
the constant time unitDt such thatv0Dt is unity, the timet
is measured by the depthz of the density wave from the hi
surface. We call the time measured by the discretized depz
a time step. The density wave plane is also discretized,
the model is defined on a two-dimensional triangular latt
representing the density wave plane.

The dynamics of the crack tips is ruled by stress a
strain field in the material. We introduce randomness of m
terial by introducing spatial randomness in the elas
moduli. As schematically shown in Fig. 1, the randomne
causes random dilationu(x,y,z) on the density wave plan
when the material undergoes compression by the den
wave. This dilation is a driving force of the crack propag
tion. Starting from a standard description of deformation
a strain tensor field and neglecting thez component of the
deformation, the two-dimensional deformation on the den
wave plane is shown to be approximately described b
displacement potentialf(x,y,z) @5#. We assume that the
boundary condition off(x,y,z) on crack tips isf(x,y,z)
50, which means that displacement near a crack tip is p
pendicular to the crack tip. The boundary of the whole s
tem is connected by periodic boundary conditions. Solv
the equation forf(x,y,z) and comparing the magnitude o
displacement on both sides of the crack, the crack tip
assumed to move toward the place where the displaceme
smaller. By this dynamics a larger fragment section tend
expand its area faster than neighboring small fragment
tions, where a fragment section is defined by an area on
density wave surrounded by cracks. This kind of dynam
favorable for the larger fragment sections causes the com
tition between the fragment sections, which is the origin
the power-law fragment size distribution.

As one can see from above discussions, the dynamic
crack propagation in our model is not directly related to

FIG. 1. A schematic figure of our numerical model. A thin com
pressive density wave causes dilation on the density wave pl
which drives the crack propagation.
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potential flaw criterion, which is considered to be a ba
concept of fracture mechanics@16–18#. Potential flaws may
control the crack propagation dynamics with the effect
strain and stress fields. However, since we have not s
ceeded in deducing the dynamics rigorously from the st
dard fracture dynamics, we apply the macroscopic dynam
deduced using the knowledge of fractal growth discus
above in our numerical model.

The numerical simulation is started from the initial cra
configuration such that the hit surface of the specimen
heavily destroyed and separated into many small fragm
by many cracks. By the dynamics discussed above,
cracks can only move and merge on the propagating den
wave with no bifurcation and no spontaneous stop. As
result, the crack density monotonically decreases as the
sity wave propagates. Such decay of crack density is q
natural in view of the energy because the crack propaga
is a dissipative process.

For analyses of sensitivity of the system to small pert
bation, we prepare two systems that have completely ide
cal initial crack configurations but slightly different dilatio
fieldsu(x,y,z). The dilation field of system 1,u1(x,y,z), is
given by assigning a uniform random number in the ran
@1.0,1.5! for each lattice site (x,y,z). The dilation field of
system 2,u2(x,y,z), is given by that of system 1,u1(x,y,z),
and a perturbation fielde(x,y,z) as

u2~x,y,z!5u1~x,y,z!1e~x,y,z!. ~1!

We will check the behavior of the system for two differe
types of perturbation.

~a! The perturbation is given at one single lattice site
the impact surfacez50. That is,e(x,y,z) is set zero excep
for e(0,0,0), which is set 0.1.

~b! The perturbation is applied by a random field. F
each site (x,y,z), e(x,y,z) is assigned by a uniform random
number in the range@0.0,5.031026).

Given an identical crack configuration on the hit surfa
z50, the time evolution of the two systems is perform
according to the process discussed above. Since the in
crack configurations onz50 planes are identical for both
systems 1 and 2, the crack pattern on thez50 planes com-
pletely overlaps when the planes are overlapped. As t
goes on the dynamics expands the effect of the perturba
given in the system 2, which causes the difference in
crack patterns on the density wave planes. This differenc
observed as the unoverlapped patterns of cracks on the
sity wave planes. During the time evolution, we observe
expansion of the effect of perturbation by a Humming d
tancedH(z). The Humming distancedH(z) used in this pa-
per is defined as the length of unoverlapped cracks on
density wave plane of system 1 normalized by total length
cracks on the density wave plane of the system 1. Note
the Humming distancedH(z) is dimensionless by definition
At the initial conditiondH(0)50 and we expect thatdH(z)
increases with time.

We observed the behavior of the Humming distan
dH(z) by simulations of the model of size 5123512 for 128
time steps. The numerical results in this paper are avera
of results by five different simulations. The results of t
time evolution of the Humming distancedH(z) are given in

e,



rl

r

y
o

a
an
on
th
-
he
ck
un

ce
ef
e

ve
ck

e
g. 3

ba-

ra-
lity
ale,
ea,
sity
m-

ears
his

ed t

PRE 58 5181BRIEF REPORTS
Fig. 2 in log-log scale. As in the figure, the points are clea
on straight lines in the range ofz from 100 to 102, indicating
that the Humming distancedH(z) expands following a powe
law as

dH~z!}z2.3 ~2!

for both types of perturbations~a! and ~b!. The power-law
expansion of the Humming distancedH(z) is rather peculiar
in view of the chaotic dynamics because most chaotic s
tems show an exponential expansion of the initial err
However, it can be interpreted as chaotic behavior with
zero Lyapunov exponent. The power-law expansion me
that our model is at the marginal point between a chaotic
a nonchaotic system. Figure 3 shows a three-dimensi
configuration of unoverlapped cracks for the case of
single point perturbation~a!. This figure describes the man
ner of the propagation of the effect of perturbation from t
perturbed point by the spatial pattern of unoverlapped cra
Starting from the perturbed point on the hit surface, the
overlapped cracks spread, forming a conelike shape.

The power-law expansion of the Humming distan
dH(z) is determined by this conelike propagation of the
fect of the perturbation. For the case of the single point p
turbation~a!, we observed the distancer (z) between the pro-
jection point of the perturbed point on the density wa
plane (x,y,z)5(0,0,z) and the farthest unoverlapped cra
on the density wave plane from the projection point as

FIG. 2. The Humming distancedH ~dimensionless! by the single
point perturbation (s) and the field perturbation (d) as functions
of system depthz ~lattice units!.

FIG. 3. A three-dimensional configuration of unoverlapp
cracks produced by the single point perturbation.
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function of z. The r (z) roughly describes the radius of th
base of the cone formed by the unoverlapped cracks in Fi
as a function ofz. As in Fig. 4,r (z) expands with a power
law:

r ~z!}z1.2. ~3!

As mentioned above, the effect of the single point pertur
tion reaches within a circle of radiusr (z), and all of the
unoverlapped cracks are inside the circle of radiusr (z) on
the density wave plane. Assuming that the crack configu
tion on the density wave plane shows no complex fracta
and its fractal dimension is 2 for a large observational sc
we introduce crack density, or crack length per unit ar
s(z) on the density wave plane. Note that such crack den
cannot be physically meaningful for complex fractal geo
etry in general. The crack densitys(z) is a monotonically
decreasing function ofz. The total length of cracksl t and the
length of unoverlapped cracksl u on the density wave plane
in the system of sizeL at depthz are roughly written using
s(z) asl t5L2s(z) andl u5pr (z)2s(z), respectively. Thus,
by definition, the Humming distancedH(z) defined in our
paper has a simple meaning:dH5 l u / l t5pr (z)2/L2 repre-
sents the area where the effect of the perturbation app
normalized by the total area of density wave plane. In t
case, we can expect a relation

dH}r ~z!2}z2.4, ~4!

FIG. 4. The distancer (z) ~lattice units! as a function ofz ~lat-
tice units! in log-log scale.

FIG. 5. The relation between the box sizea ~lattice units! and
the number of the occupied boxN by the box-counting method
applied to the crack configuration on the density wave plane az
564. The fractal dimension is close to 2 for large scale.
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which is close to Eq.~2!. To check the assumption that th
crack configuration on the density wave plane has no c
plex fractality, the result of fractal analysis of the crack co
figuration on the density wave plane by box-counti
method is shown in Fig. 5. As we can see from the figure,
fractal dimension of the crack configuration on the dens
wave plane is close to 2 for a large observational scale
this way, the power exponent of the Humming distance
pansion is determined by the exponent of the propagatio
the effect of perturbation and not by the complex fractality
the crack configuration.

The most significant result of our simulation is the fa
that the Humming distancedH(z) does not expand exponen
tially as in most chaotic systems but expands with a po
law. As mentioned above, it can be interpreted as cha
behavior with a zero Lyapunov exponent. A negati
Lyapunov exponent means that the perturbation in the in
condition vanishes during the evolution of the system
D.
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short time, while a positive exponent means that the ini
perturbation expands exponentially and makes the beha
of the system unpredictable. In the case of the z
Lyapunov exponent, the initial perturbation does not van
nor does it expand exponentially, but the effect of the p
turbation remains in the system long time period and
pands slowly. So, the impact fracture is more predicta
than the usual chaotic behavior with a positive Lyapun
exponent, but it is still difficult to predict the exact behavi
of the impact fracture because of the power-law expansio
errors. Some self-organized fractal system such as a mod
river network formation by water erosion also shows pow
law expansion of initial error@19#. Our results imply that
dynamics of systems spontaneously organizing spatial f
tality may show power-law expansion of initial error in ge
eral.
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