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Error propagation in a model of impact fracture
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Sensitivity to the perturbation in the initial condition of a model of impact fracture is observed. Numerical
simulations show that the small perturbation in the initial condition is expanded following a power law by the
dynamics of the model. The propagation of the effect of the perturbation inside a fractured object during the
crack propagation is discussd®&1063-651X98)03810-0

PACS numbd(s): 46.30.Nz, 05.45tb

The fracture process of brittle solid materials has beempact fracture process must be observed and compared to es-
widely studied because of its importance in various fields otimate the sensitivity to the perturbation. Obviously, it is
science and technolodyt—3]. In spite of these studies, it is impossible to conduct such an experiment by our present
still very difficult to predict exactly how an object is frac- technique. Computer simulations resolve these technical
tured by an impact fracture process under given conditionsproblems.

In view of classical physics, for a prediction of the behavior In this paper, we observe the sensitivity to the perturba-
of a system, we need the dynamics governing the time evdion of an impact fracture process using a specific model
lution of the system and observation of the initial conditionproposed by Inaoka and Takayd$l.

of the system with sufficient accuracy. In the case of the The model was proposed to reproduce the fractality in the
impact fracture process, our understanding of the dynamicthree-dimensional impact fracture such as the power-law
of crack propagation is not very good for such predictionsfragment size distribution observed in an experiment of the
nor do we have a good technique to observe the fields dragmentation of sphere-shaped gl Not only does the
stress, strain, elastic moduli, etc. inside the object as the inmodel successfully reproduce the power-law fragment size
tial condition given to the crack propagation dynamics.distribution with good accuracy, it also explains universality
Moreover, even with a full understanding of dynamics and aof the distribution independent of the material of a fractured
good observational technigue, we would not be able to elimispecimer[5,7] and the transition in the distribution by frag-
nate the difficulty of the prediction of the impact fracture mentation of a plate-shaped specini@r8]. Though the deri-
process if the dynamics causes “chaotic behavior.” vation of the dynamics of the model from standard fracture

The chaotic dynamics has a characteristic nature to exmechanics is still incomplete, by these successes, we think
pand a minor perturbation in the initial condition exponen-that the model captures essential features of the impact frac-
tially [4]. Namely, perturbatiorg, in the initial condition is  ture process and that the results obtained by this specific
expanded with time as epexp(\t), where the constark is  model are reliable.
called the Lyapunov exponent. This means that the behavior The details of our numerical model are discussed in Ref.
of a chaotic system is very sensitive to its initial condition.[5]. Here, we briefly review the basic idea. It has been rec-
That is, very slight observational errey in the initial con-  ognized that a competition process among growing elements
dition smaller than the observational resolution is expandeis generally essential for a growth system to produce fracta-
far greater than the observational resolution in a very shodity [10]. In a system of diffusion-limited aggregatiphl], a
time to be observed as a big difference of the system behawypical fractal growth system, for example, the competition
ior. Since the observational error is inevitable in any obseramong growing clusters, produces a power-law cluster size
vation and it is impossible to know the difference betweendistribution[12]. The analogy of the crack propagation to the
the observed value and the real value smaller than the obsatiffusion-limited aggregation has been discussed for a qua-
vational resolution, the long-term behavior of a chaotic syssistatic, elastic systef13,14, where the speed of the crack
tem is unpredictable though the dynamics is deterministic. propagation is much smaller than that of the speed of the

In this way, whether the dynamics of crack propagationelastic wave in the medium. Our fracture model is based on
causes chaotic behavior is a big problem for prediction ofa competitive process during crack propagation as follows.
impact fracture process. For quantitative analyses of the sen- The mechanisms of three-dimensional crack propagation
sitivity to the small perturbation of the impact fracture by anin general situations are very complicated, so we focus on
experiment, we have to prepare two identical samples thahe situation where a rectangular parallelepiped object suf-
have the same spatial distribution of compositions, textureders an impact on one of its sides. It is a reasonable assump-
potential flaw, and so on, and we have to put a small perturtion that a planelike compressive density wave propagates
bation of these fields onto one of the two samples. Thenfrom the hit surface toward the opposite side with a constant
identical impact must be loaded onto these two samples, anelocity vy as schematically shown in Fig. 1. We assume that
the crack propagation inside the two samples during the immost of the crack propagation occurs only on this density
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y/- _ potential flaw criterion, which is considered to be a basic

concept of fracture mechanif$6—1§. Potential flaws may
| — Crack Tip control the crack propagation dynamics with the effect of
“ \ strain and stress fields. However, since we have not suc-

/\/ v ceeded in deducing the dynamics rigorously from the stan-
SR \ S Dilation —» —» dard fracture dynamics, we apply the macroscopic dynamics

N deduced using the knowledge of fractal growth discussed

>

above in our numerical model.
{ TCT f T I The numerical simulation is started from the initial crack
Qmpression configuration such that the hit surface of the specimen is

Impact Density Wave heavily destroyed and separated into many small fragments

o _ _ by many cracks. By the dynamics discussed above, the

FIQ. 1.A sc_:hematlc figure of qur_numerlcal mode_l. A thin com- ~racks can only move and merge on the propagating density
pressive density wave causes dilation on the density wave plang,sve with no bifurcation and no spontaneous stop. As a

which drives the crack propagation. result, the crack density monotonically decreases as the den-

wave, forming a so-called failure way&5]. By this assump-  Sity wave propagates. Such decay of crack density is quite
tion we can treat the three-dimensional impact fracture pronatural in view of the energy because the crack propagation
cess by considering a time evolution of a crack configuratiort & dissipative process.
on the two-dimensional density wave. We observe the propa- For analyses of sensitivity of the system to small pertur-
gation of cracks on a coordinate whase plane is placed bation, we prepare two systems that have completely identi-
on the hit surface of the fractured object and thaxis is gal initial crack configurations but slightly different dilation
directed toward the propagating direction of the wave. Thdi€lds 6(x,y,z). The dilation field of system 14,(x,y,2), is
density wave is placed at a deptht from the hit surface at given by assigning a uniform random number in the range
time t, and in a small time intervaht it proceeds a small [1.0,1.5 for each lattice siteX,y,z). The dilation field of
distancevoAt. In our model, time is discretized and a crack SYStem 262(x,y,2), is given by that of system B,(x,y,2),
tip configuration on a layer at depthyt determines the con- and a perturbation field(x,y,z) as
figuration of the next layer at depthy(t+At). By setting
the constant time uniAt such thatyAt is unity, the timet 02(x,y,2)= 61(X,y,2) + €(X,y,2). (1)
is measured by the depthof the density wave from the hit
surface. We call the time measured by the discretized depthWe will check the behavior of the system for two different
a time step. The density wave plane is also discretized, aniypes of perturbation.
the model is defined on a two-dimensional triangular lattice (&) The perturbation is given at one single lattice site on
representing the density wave plane. the impact surface=0. That is,e(X,Yy,z) is set zero except
The dynamics of the crack tips is ruled by stress andor €(0,0,0), which is set 0.1.
strain field in the material. We introduce randomness of ma- (b) The perturbation is applied by a random field. For
terial by introducing spatial randomness in the elasticeach siteX,y,z), e(X,y,z) is assigned by a uniform random
moduli. As schematically shown in Fig. 1, the randomnesswumber in the rangg0.0,5.0< 10°).
causes random dilatioé(x,y,z) on the density wave plane Given an identical crack configuration on the hit surface
when the material undergoes compression by the densitg=0, the time evolution of the two systems is performed
wave. This dilation is a driving force of the crack propaga-according to the process discussed above. Since the initial
tion. Starting from a standard description of deformation bycrack configurations oz=0 planes are identical for both
a strain tensor field and neglecting thecomponent of the systems 1 and 2, the crack pattern on k€0 planes com-
deformation, the two-dimensional deformation on the densityletely overlaps when the planes are overlapped. As time
wave plane is shown to be approximately described by @oes on the dynamics expands the effect of the perturbation
displacement potentiad(x,y,z) [5]. We assume that the given in the system 2, which causes the difference in the
boundary condition ofp(x,y,z) on crack tips is¢(x,y,2) crack patterns on the density wave planes. This difference is
=0, which means that displacement near a crack tip is perebserved as the unoverlapped patterns of cracks on the den-
pendicular to the crack tip. The boundary of the whole syssity wave planes. During the time evolution, we observe the
tem is connected by periodic boundary conditions. Solvingexpansion of the effect of perturbation by a Humming dis-
the equation forg(x,y,z) and comparing the magnitude of tancedy(z). The Humming distancedy(z) used in this pa-
displacement on both sides of the crack, the crack tip iper is defined as the length of unoverlapped cracks on the
assumed to move toward the place where the displacement@ensity wave plane of system 1 normalized by total length of
smaller. By this dynamics a larger fragment section tends teracks on the density wave plane of the system 1. Note that
expand its area faster than neighboring small fragment se¢he Humming distancdy(z) is dimensionless by definition.
tions, where a fragment section is defined by an area on that the initial conditiondy(0)=0 and we expect that,(z)
density wave surrounded by cracks. This kind of dynamicsncreases with time.
favorable for the larger fragment sections causes the compe- We observed the behavior of the Humming distance
tition between the fragment sections, which is the origin ofdy(z) by simulations of the model of size 5512 for 128
the power-law fragment size distribution. time steps. The numerical results in this paper are averages
As one can see from above discussions, the dynamics aff results by five different simulations. The results of the
crack propagation in our model is not directly related to thetime evolution of the Humming distanadk,(z) are given in
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FIG. 4. The distance(z) (lattice unit3 as a function o (lat-

FIG. 2. The Humming distanad, (dimensionlessby the single tice unit3 in log-log scale.

point perturbation ©) and the field perturbation®) as functions

of system deptiz (lattice units. function of z. Ther(z) roughly describes the radius of the

base of the cone formed by the unoverlapped cracks in Fig. 3

Fig. 2 in log-log scale. As in the figure, the points are clearlyas a function of. As in Fig. 4,r(z) expands with a power

on straight lines in the range affrom 1@ to 1¢%, indicating
that the Humming distanady, (z) expands following a power
law as 3
As mentioned above, the effect of the single point perturba-
tion reaches within a circle of radiufz), and all of the

for both types of perturbation&) and (b). The power-law unoverlapped cracks are inside the circle of radi(® on
expansion of the Humming distandg(z) is rather peculiar the density wave plane. Assuming that the crack configura-
in view of the chaotic dynamics because most chaotic systion on the density wave plane shows no complex fractality
tems show an exponential expansion of the initial errorand its fractal dimension is 2 for a large observational scale,
However, it can be interpreted as chaotic behavior with ave introduce crack density, or crack length per unit area,
zero Lyapunov exponent. The power-law expansion meang(z) on the density wave plane. Note that such crack density
that our model is at the marginal point between a chaotic angannot be physically meaningful for complex fractal geom-

a nonchaotic system. Figure 3 shows a three-dimensionaitry in general. The crack density(z) is a monotonically
configuration of unoverlapped cracks for the case of thelecreasing function of. The total length of crackls and the
single point perturbatiotta). This figure describes the man- length of unoverlapped crackg on the density wave plane
ner of the propagation of the effect of perturbation from thein the system of sizé& at depthz are roughly written using
perturbed point by the spatial pattern of unoverlapped cracksr(z) asl,=L2%c(2) andl,= nr(2)?0(z), respectively. Thus,
Starting from the perturbed point on the hit surface, the unby definition, the Humming distancey(z) defined in our
overlapped cracks spread, forming a conelike shape. paper has a simple meanindy=1,/l,=7r(2)?%/L? repre-

The power-law expansion of the Humming distancesents the area where the effect of the perturbation appears
dy(2) is determined by this conelike propagation of the ef-normalized by the total area of density wave plane. In this
fect of the perturbation. For the case of the single point perease, we can expect a relation
turbation(a), we observed the distancéz) between the pro-
jection point of the perturbed point on the density wave
plane &,y,z)=(0,0z) and the farthest unoverlapped crack
on the density wave plane from the projection point as a

r(z)«z'2

dn(2)=2** )

dyocr(z)?e 2?4,

4

104 -
Slope = —2.0 ]

Z, “
10° N i

A .
oy 10° ] ! |

= 10° 10} 102 10?

< 47 1_F a

Impact FIG. 5. The relation between the box siaglattice unitg and
the number of the occupied bdX by the box-counting method
FIG. 3. A three-dimensional configuration of unoverlappedapplied to the crack configuration on the density wave plane at

cracks produced by the single point perturbation. =64. The fractal dimension is close to 2 for large scale.
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which is close to Eq(2). To check the assumption that the short time, while a positive exponent means that the initial
crack configuration on the density wave plane has no comperturbation expands exponentially and makes the behavior
plex fractality, the result of fractal analysis of the crack con-of the system unpredictable. In the case of the zero
figuration on the density wave plane by box-countingLyapunov exponent, the initial perturbation does not vanish
method is shown in Fig. 5. As we can see from the figure, théor does it expand exponentially, but the effect of the per-
fractal dimension of the crack configuration on the densityturbation remains in the system long time period and ex-
wave plane is close to 2 for a large observational scale. IR@nds slowly. So, the impact fracture is more predictable
this way, the power exponent of the Humming distance ex{han the usual chaotic behavior with a positive Lyapunov
pansion is determined by the exponent of the propagation gXxponent, but it is still difficult to predict the exact behavior

the effect of perturbation and not by the complex fractality ofOf the impact fracture bepause of the power-law expansion of
the crack configuration. errors. Some self-organized fractal system such as a model of

The most significant result of our simulation is the fact river network formation by water erosion also shows power-

that the Humming distanagy,(z) does not expand exponen- law expansion of initial errof19]. Our resulltg imply Fhat
. ) ; . dynamics of systems spontaneously organizing spatial frac-
tially as in most chaotic systems but expands with a powe

law. As mentioned above, it can be interpreted as chaotit{:argﬁy may show power-law expansion of initial error in gen-

behavior with a zero Lyapunov exponent. A negativee ’
Lyapunov exponent means that the perturbation in the initial This work was partially supported by the Japan Society
condition vanishes during the evolution of the system infor the Promotion of Science.
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